3.96 \(\int \frac{\csc (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=43 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{f \sqrt{a+b}} \]

[Out]

-(ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]]/(Sqrt[a + b]*f))

________________________________________________________________________________________

Rubi [A]  time = 0.0677984, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4134, 377, 207} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{f \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]]/(Sqrt[a + b]*f))

Rule 4134

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^
n)^p)/x^(m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (-1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{-1-(-a-b) x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{f}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{\sqrt{a+b} f}\\ \end{align*}

Mathematica [A]  time = 0.106268, size = 86, normalized size = 2. \[ -\frac{\sec (e+f x) \sqrt{a \cos (2 e+2 f x)+a+2 b} \tanh ^{-1}\left (\frac{\sqrt{-a \sin ^2(e+f x)+a+b}}{\sqrt{a+b}}\right )}{\sqrt{2} f \sqrt{a+b} \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[a + b]]*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x])/(Sqrt[
2]*Sqrt[a + b]*f*Sqrt[a + b*Sec[e + f*x]^2]))

________________________________________________________________________________________

Maple [B]  time = 0.379, size = 280, normalized size = 6.5 \begin{align*}{\frac{ \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{2\,f\cos \left ( fx+e \right ) \left ( -1+\cos \left ( fx+e \right ) \right ) }\sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2}}}} \left ( \ln \left ( -2\,{\frac{-1+\cos \left ( fx+e \right ) }{\sqrt{a+b} \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \left ( \cos \left ( fx+e \right ) \sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2}}}}\sqrt{a+b}-a\cos \left ( fx+e \right ) +\sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2}}}}\sqrt{a+b}+b \right ) } \right ) +\ln \left ( -4\,{\frac{1}{-1+\cos \left ( fx+e \right ) } \left ( \cos \left ( fx+e \right ) \sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2}}}}\sqrt{a+b}+a\cos \left ( fx+e \right ) +\sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2}}}}\sqrt{a+b}+b \right ) } \right ) \right ){\frac{1}{\sqrt{a+b}}}{\frac{1}{\sqrt{{\frac{b+a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/2/f/(a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*(
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2
)*(a+b)^(1/2)+b)/sin(f*x+e)^2)+ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos
(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e))))*sin(f*x+e)^2/((b+a*cos(f*
x+e)^2)/cos(f*x+e)^2)^(1/2)/cos(f*x+e)/(-1+cos(f*x+e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [A]  time = 0.698004, size = 360, normalized size = 8.37 \begin{align*} \left [\frac{\log \left (\frac{2 \,{\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt{a + b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, \sqrt{a + b} f}, \frac{\sqrt{-a - b} \arctan \left (\frac{\sqrt{-a - b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right )}{{\left (a + b\right )} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 2*
b)/(cos(f*x + e)^2 - 1))/(sqrt(a + b)*f), sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x
 + e)^2)*cos(f*x + e)/(a + b))/((a + b)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc{\left (e + f x \right )}}{\sqrt{a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(csc(e + f*x)/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)/sqrt(b*sec(f*x + e)^2 + a), x)